If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-7x-260=0
a = 7; b = -7; c = -260;
Δ = b2-4ac
Δ = -72-4·7·(-260)
Δ = 7329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{7329}}{2*7}=\frac{7-\sqrt{7329}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{7329}}{2*7}=\frac{7+\sqrt{7329}}{14} $
| k+94=5k-42 | | -8y+10=-6(y-3) | | 3n+24+4n+37=180 | | t-618/(-20)=-12 | | -3(u+2)=4u-41 | | 5q+45=13q-75 | | 12x-17=3x+10 | | 9/8x-2x+28=21/8x | | -26m+3=809 | | 6=2/3x-3 | | 5s=9s-1 | | n3=2n-3 | | 2x=x=9+9 | | y/9-2=3 | | 10/3x-12x+24=40/3 | | 3/5w=12/25 | | 3y-5y=10=36 | | 14k-180=32k-100 | | r/(-30)+(-384)=-391 | | 5/3x-6x+24=40/3 | | 51=1,7x | | 4(x)/2=6 | | g/(-4)+18=45 | | 19-5/4x=14 | | 9x-2x+14=16x | | 57z-41=49z-25 | | x(4)÷2=6 | | 1x+10x=495 | | 4*5+5y=-20 | | 7p+21+9=5p-10 | | -2/3x=1/5 | | -4(7z-)+5z=-2(3z+4)-3z |